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Renormalisation group study of a disordered model 

B Derrida and E Gardner 
SPhT Orme des Merisiers, C E N  Saclay, 91 191 Gif sur Yvette, Cedex, France 

Received 1 1  April 1984 

Abstract. We study the Potts model on a diamond hierarchical lattice with random 
interactions. Using weak disorder expansions, we calculate analytically the position and 
the exponents of the random fixed point which appears when the specific heat exponent 
ap  of the pure system becomes positive. At ap = 0, we find how the logarithmic singularity 
is modified by the disorder. Lastly we suggest that this model should present Griffiths-like 
singularities. 

1. Introduction 

In the last ten years, real space renormalisation methods have been used to study an  
increasing number of problems in statistical physics (for a recent review see Burkhardt 
and Van Leeuwen 1982). Among all the real space renormalisation schemes, a very 
simple one is the Migdal-Kadanoff method (Migdal 1976, Kadanoff 1976). For models 
defined on Bravais lattices, the Migdal-Kadanoff renormalisation method is an  approxi- 
mate way of calculating critical points and  critical exponents which does not usually 
give very accurate estimations. However, although it is very simple, one believes that 
it contains several important features which are common to all the real space renormali- 
sation methods. Moreover, it was realised that one can construct some scale-invariant 
lattices (called hierarchical lattices) on which the Migdal-Kadanoff method gives an 
exact renormalisation transformation (Berker and  Ostlund 1979). This motivated 
recently several works (Kaufman and  Griffiths 1981, 1983, Griffiths and  Kaufman 1982, 
Melrose 1983, Derrida et a1 1983, McKay and  Berker 1984, Kaufman and Andelman 
1984) in particular to distinguish between the features which are peculiar to hierarchical 
lattices and  those which should remain valid on usual Bravais lattices. 

The idea of using the Migdal-Kadanoff approximation to study disordered systems 
is not a new one (Jayaprakash et al 1978, Southern et a1 1979, Yeomans and Stinch- 
combe 1979, Kinzel and Domany 1981, Benyoussef and Boccara 1982). The simplest 
models of disordered systems are defined by a probability distribution of the nearest- 
neighbour interactions. Using the Migdal-Kadanoff method, one can write the equation 
which gives the way that this probability distribution is renormalised. Since the space 
of probability distributions is an infinite-dimensional space, trying to find a fixed point 
is not an  easy mathematical problem (a  very simplified example was recently solved 
by Collet et a1 1983). Until now this difficulty has usually been solved by replacing 
the renormalised distribution by a distribution which belongs to a finite-dimensional 
space. For example, one decides to consider only distributions which are sums of two 
delta functions and one replaces the renormalised distribution by the sum of two delta 
functions which has the same first moments. I t  is not easy to estimate the accuracy 

0305-44701841 163223 + 14$02.25 @ 1984 The Institute of Physics 3223 



3224 B Derrida and E Gardner 

of this additional approximation and to know whether some effects are lost. Recently 
Andelman and Berker (1984) decided to go beyond this approximation and to determine 
the true fixed point distribution by numerical methods. Although they could obtain 
interesting estimations of the specific heat exponent a and of the cross over exponent 
4 in several situations, their work shows clearly that it is not easy to find accurate 
values of these exponents. 

In the present work, we study the Potts model on a diamond hierarchical lattice 
with random interactions (Kinzel and Domany 1981, Andelman and Berker 1984). 
When the specific heat ex onent a p  of the pure system becomes positive (this corre- 

1974) and a new fixed point appears in the probability distribution space. In the 
following we shall call this fixed point, the random fixed point. Using weak disorder 
expansions, we calculate analytically the location of this random fixed point and of 
its exponents in powers of q - qo. When ap  = 0, we obtain the way that the specific 
heat singularity is modified by a narrow distribution of interactions. Lastly, we suggest 
that this model presents Griffiths (1969) like singularities. 

The paper is organised as follows. In § 2, we introduce the model. We describe 
some properties of the pure system in § 3. In § 4, we give the result of our weak 
disorder expansion. In § 5 we obtain the fixed points and their exponents for q - qo<< 1. 
In § 6, we find the equation of the critical surface using the nonlinear scaling fields 
(Wegner 1976). In § 7, we study in more detail the case where a p  = 0 and we find the 
singular part of the specific heat for a narrow distribution of interactions. In § 8, we 
discuss the possibility of Griffiths singularities. 

sponds to q > qo = 4 +2  ,rp 2) we shall see that the disorder becomes relevant (Harris 

2. Definition of the model 

Throughout this paper we consider a Potts model on a diamond hierarchical lattice 
with random nearest-neighbour interactions. The diamond hierarchical lattice is con- 
structed according to the recursion rule shown in figure 1. On this lattice, we consider 
a random q state Potts model whose Hamiltonian is 

where the spins ai can take q different values, the sum runs over all pairs of nearest 
neighbours on the hierarchical lattice and the interactions Jii are distributed according 
to a given probability distribution. It will be more convenient to work with Boltzmann 

Figure 1. The diamond hierarchical lattice is constructed recursively. One starts with one 
bond ( a ) .  To go from (a )  to ( b )  one replaces this bond by a set of four bonds. To go 
from ( a )  to ( c )  one replaces each bond in ( b )  by a set of four bonds, and so on. 
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factors. Therefore, on each bond we consider a variable x 

( 2 )  

and we consider as given the probability distribution P o ( x )  of x. 
Under the decimation procedure, each set of four bonds x:?,, x ; ~ ? ~ ,  xL311, x?l1 at 

generation n -  1 can be replaced by one single bond x ,  at generation n and the 
renormalisation transformation R is just 

= ePJ1j 

x,  = R(x!, ' .!~, x',?,, xL3J1, x??,) 

Let us consider a hierarchical lattice of 2(4,-' + 2 ) / 3  sites (i.e. qN-I bonds) for which 
the x have been obtained randomly according to a probability distribution Po(x) .  After 
n decimations, we obtain a lattice of 2 ( 4 N - ' - 1  + 2 ) / 3  sites ( q N - " - '  bonds) whose 
interactions x are distributed according to a renormalised probability distribution P. ( x )  
which can be deduced from P o ( x )  using the following recursion formula 

If we define the reduced free energy f ( { P o } )  per bond by 

where 2, is the partition function of a hierarchical lattice of 4 N  bonds and the average 
log 2, is performed over all the choices of the nearest-neighbour interactions, then 
one has 

The problem of finding the phase diagram and the transition lines of this disordered 
model is equivalent to the problem of finding the surfaces in the space of all the 
distributions Po where the free energy f ( P o )  given by ( 6 )  is singular. In 0 4 ,  we shall 
use weak disorder expansion to study this problem. Before doing so, let us recall 
briefly in 0 3 some properties of the pure model. 

3. The pure system 

By definition, for the pure system, all the interactions x are the same. Therefore the 
distribution P o ( x )  is a delta function concentrated at a given point xo. Obviously this 
property remains after decimation and the distributions P n ( x )  are delta functions 

P , ( x )  = 6 ( X - X , ) .  (7) 

The x ,  are obtained from xo by the following renormalisation transformation T: 
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For each value of q, the fixed point x, of the renormalisation transformation is the 
critical point and x, is related to q by 

- 
q = (Jx,-  l ) ( X , -  I ) .  (9) 

It is easier to express q as a function of x,. Therefore in the following, we shall always 
vary x, instead of q, keeping in mind that q is related to x, by (9). 

For a given value of the interaction xo, the reduced free energy f(xo)  per bond is 
given by the following series 

x 1  

where g ( x )  is given by 

g ( x )  = 4 log(2x + q  -2) (11) 

and xn is the nth iterate of xo by the transformation T. 
It is easy to find the singular part off by noticing that it obeys the following equation 

f ( x )  = i f ( T ( x ) )  +g(x ) .  (12) 
Since in (12), the function g ( x )  has no singularity at x,, the singular parts coming 
from f in the two sides of equation (12) must be equal. This implies that the singular 
part Ling o f f  at x, has the following form 

(13) f s i n g ( X )  - I X  - xcl*-“Ph(log(x - xc)/log( ~ ’ ( x c ) ) )  

where h is a periodic function of period 1 and the specific heat exponent aP of the 
pure system is given by 

The calculation of the periodic function h is not, in general, easy and to our knowledge, 
only approximate methods of calculating it are known (Derrida et a1 1984). However 
when a p  vanishes one can show that the specific heat has a logarithmic singularity at 
the critical point and one can calculate the coefficient of the logarithm. 

Let us now find the amplitude of this logarithm. From (14), it is easy to see that 
ap vanishes for J x ,  = 1 + J 2 ,  i.e. for 

q = 4 +242. 115) 

- - 

Differentiating (12) twice with respect to x gives 

f ’ ( x ,  = i (  T‘(x))’f’( T ( x ) )  +$T”(x)f’( T(x))  +g”(x) .  (16) 

In the neighbourhood of x,, using the fact that T’(x,) = 2, one can replace (16) by 

f’(xc + x - x,) =f’(x, + 2(x - x,)) +i T”(x,)f’( x,) + g”( x,) (17) 

to find the singular part f!,ng(x) off’. The general solution to (17) is 

f!ing(X) = c loglx - x,/ + H(l0glx - x,//log 2) 

where the constant C is given by 
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and H is a periodic function of period 1 in loglx - x,l/log 2. From (8), ( 1  I ) ,  (12) and 
(15), one can calculate T”(x,), f’(x,) and g”(x,) and one gets 

(20) C = -( 1/2 log 2)129&-41) = -( 1/2 log 2 ) ( h -  

4. The weak disorder expansion 

In this part, we show how a narrow distribution concentrated around the fixed point 
x, of the pure system is transformed by one step of the renormalisation transformation 
(4). 

Writing 

x;i, = x, +&ti,, x, = x, + E,  

we may expand E,  in powers of the using formula (3). This is what we have done 
and we have obtained the expression of E ,  in terms of the E::, up to the 4th power. 
We do  not give this expression here because it is rather long and complicated although 
there is no difficulty in obtaining it from the recursion formula (3). 

In the following, we shall consider a special class of narrow distributions. The 
interest of this class is that when the specific heat exponent aP of the pure system is 
small, we shall be able to find a fixed distribution of the renormalisation transformation 
(4) in this class. 

Let us consider the class of narrow distributions which have the following property. 
We assume that we have at our disposal a small parameter A :  

(21% b )  

A K 1 (22) 

and we consider narrow distributions such that for p 3 I 
_ _ -  

E 2 P  - AP.  E2P-l  - 
Using the expansion of E, in powers of the one can calculate the moments 2 as 
functions of the moments E : - ,  up to a given power of A. One can easily check that 
if the moments of the renormalised 
distribution satisfy also condition (23). 

We have derived the following equations for the first four moments of the distribu- 
tion of the E ,  up to the order A’. 

- 

satisfy condition (23), then the moments 

-~ 
= 4 A J z  F,-l - 4ABJx, E : -  I + (2  BJX, - 4AB& +4A2)(E,_1)2 

+ ( -4B2& + 12AB2& - 8 A 2 B ) F , - l z  

+ (4B3&- 12AB3& +4A2 B 2 ) ( z ) 2  
-- -- 

+ (4AB2Jxc)~’ , - ,  + ( -4AB3Jx,)~:-, 
- 
E :  = 4 A 2 x , Z +  12A2x,(E,_,)2+(8ABx,-40A2Bx,+ 1 6 A 3 & ) ~ ~  

+ (2B2x, - 16AB2x, +44A2B2xC - 16A3 BJX, +4A4)(E2,_1)’ 

-~A’BX,E’,_~ + 1 2 A 2 B 2 ~ c ~ : _ l  
- - 

- - 
E’, = 3 6 A 3 ~ z ” E , _ , ~ t - 1  +( 12A2Bx~’’ -60A3Bx;’’ +24A4x,)(sZ,_,)’ 

- - 
+ 4 A 3 ~ : / 2 ~ ’ , -  I - 1 2A3 B x ~ ’ ~ E :  - I 
- - - 
E: = 36A4xf(&:-,)’ + 4 A 4 x f ~ ; - ,  
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where A and B are constants given by 
- 

A = JX,/(JX,+i)2, B = l/[(x,- l)(Jx,- l)]. ( 2 8 4  b )  

The only talent required to obtain expressions ( 2 4 )  to ( 2 7 )  is virtuosity in Taylor 

One can also calculate the moments c2nP-' and &iP to  leading order in A, i.e. to 
expansions. - - 

order A P  and one finds for p a 2  

where the q k  are given for p a 2  by 

2 p - 1  2 p - 1  -- 
q2p-1 = A2p-1  ( ) E : - ~  E ~ ~ - ~ - ~  n - I  

k = O  

P - 2  2 p - 2  -- 
& 2 k + 2  2 p - 2 - 2 k  + ( 2 p -  1)AZp-'B 1 ( ) n-1 E n - I  

k = o  2 k + 1  

- ( 2 p -  ~ ) A ~ P - I B  f 
k = O  

-- 
q2p = AZP (") E : \ ~  E ? ; ~ ~  

k = o  2 k  

and 

5. The fixed points and their exponents 

In 04,  we have just seen how the moments of a distribution Pn-l which fulfils the 
prqperty ( 2 3 )  are transformed by one renormalisation step. We are now going to see 
that we can find a fixed point distribution which belongs to the class of the distributions 
which satisfy ( 2 3 )  when the specific heat exponent ap of the pure system is small and 
positive. 

Let us choose a value of q close to the value q o = 4 + 2 h  where the exponent aP 
vanishes (see equation (15)). For this value of q, the critical point x , ( q )  is close to 
x,(qo) = 3 + 2 h .  Let us define Ax by 

Ax = x,( q )  - (3 + 2 4 2 ) .  

When Ax is small, one has from (9) 
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and a p  is small (see (14)) 

aP=[(1O-7h)/log2]Ax +O[(Ax)’]. (32) 

When Ax is small and positive, we can find two fixed distributions under the renormali- 
sation transformation (23) which belong to the class of distributions which satisfy (23) 
with A -Ax. 

The first fixed distribution is the fixed point of the pure system. For all p 2 1, the 
of this distribution vanish 

- 

- 
& P  = 0. (33) 

The second fixed distribution corresponds to the random fixed point and the 
moments 2 of this distribution can be obtained from (24), (25), (26), (27) and (29) 
by writing that = for all p. 

Expanding the constants A and B given by (28) in powers of Ax, one obtains the 
moments of this random fixed point 

F = f(6 + 2 h ) A x  

e 2 = f ( 3 6 + 2 6 h ) A x  

c3  = A(2736 + 1920&)(Ax)’ 

e4 = h(7944 + 5616h)(Ax)’.  

- 

- 
- 

One can also calculate from (29) higher moments of this fixed distribution and one 
finds that for p 3 2 

Clearly from (34b) and (35) one sees that this fixed distribution satisfies condition 
(23) and that it becomes narrower and narrower as Ax+O (i.e. ap+O). One should 
notice that the first four moments of the fixed distribution (equations (34)) can be 
obtained from the four recursion relations (24) to (27) since condition (23) ensures 
us that higher moments would contribute only to higher orders in Ax. 

At the pure as well as at the random fixed point, the critical exponents can be 
obtained from the eigenvalues of the matrix M whose elements are 

- -  
(36) M ~ , ,  = a&t /a&,- , .  I 

The structure of this matrix is such that if one wants to calculate these eigenvalues up 
to the first order in Ax, it is enough to keep only the four recursion relations (24) to 
(27) and therefore one has to diagonalise a 4 x 4  matrix M. For Ax small, these four 
recursion relations become 

E, = [2 +( 10 - 7 h ) A x G  +[-5(3&-4) +a( 109 - 7 7 J 2 ) A x I z  

+ (6 - 4&)(En-,)* +$( 1 13 - 8 d ) G z  (37a) - 
+&(734 - 5 1 9 & ) ( z ) ’  +:( 17 - 12&)= +&( 140 - 9 9 h ) ~ : - ,  
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E ,  2 = [ 1 + (10 - 7h)Ax]= + 3(E,_I)' +4(36 - 2 5 4 2 ) G Z  

At the pure fixed point, one finds for the first two eigenvalues AYure and AIS"" of the 
matrix M to first order in Ax 

A y u r e  = 2 + (10 - 7h)Ax ,  AYure=  1 +(10-7h)Ax.  (38a, 6) 

The first eigenvalue h_s an eigenvector (1 ,0 ,0 ,0)  whereas the second eigenvalue has 
the eigenvector (f(3J2-4) +a(77J2- 109)Ax, l,O, 0). 

One sees clearly in (386) that when Ax becomes positive, the second eigenvalue 
becomes larger than 1 and disorder becomes relevant according to the Harris (1974) 
criterion. 

If  p I  and puq are the two scaling fields for the first and the second eigenvalues, the 
singular part Ling of the free energy satisfies 

f s i n g ( p I , ~ * )  = i f s i n g ( ~ i ' ~ ~ ~ ~ l ,  hPUre~2)  (39) 

f s i n g ( ~ I 9  ~ 2 )  = p?-UpG(p*Z/p?p) (40) 

and therefore fsing has the following scaling form 

where the specific heat exponent a p  and the cross-over exponent 4p are given by 

log4 10-742 
Ax +O[(Ax)*] -- a p = 2 -  - 

log(A7"") log 2 

log(h$'"") 10-742 
Ax +O[(Ax)']. -~ - " = log( Ayure) log 2 

We find as expected from the exponent relation of Harris that aP = 4p at the pure fixed 
point (Kinzel and Domany 1981, Andelman and Berker 1984). 

- - 2 +$(38 - 27h)Ax,  

At the random fixed point, one finds for the first two eigenvalues 

A Y n d o m =  1 + ( 7 h -  1O)Ax (42a, 6)  

with eigenvectors (1,4(16 +24h)Ax,  f( 108 +7242)Ax, 0) and (t(342-4) + 
h(2781- 1971h)Ax, 1, 4(48 +72h)Ax,  $(216 + 156h)Ax).  

As in the pure case, one can obtain from (42) the specific heat exponent a,  and 
the cross over exponent 4r of the random fixed point 

38 - 27J2 
7 log 2 

a ,  = Ax +O[(Ax)'] 

-~ - 7J2 Ax + 0[(  AX)^]. 
log 2 

One should notice that when a p  becomes positive, i.e. when Ax becomes positive, 
the eigenvalue A T n d o m  is less than 1 and the random fixed point has only one relevant 
direction, the thermal one. 
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For a p  small, one can summarise the results (41) and (42) by expressing all exponents 
as functions of cyp: 

- 
4 p  = a p  = -4n a,= -$(2J2-  1)aP. (44a, b )  

One should notice that the specific exponent a,  is negative (when a p  > 0) but that at  
the random fixed point 4, is no longer equal to a ,  (Andelman and  Berker 1984). 

6. The scaling fields 

In order to find the critical surface and  the critical behaviour when cyp vanishes, it is 
useful to introduce the two scaling fields p I  and p2 corresponding to the two eigenvalues 
AYure and  A P u r e  (Wegner 1976). Because we are working near Ax = 0 where the eigen- 
value ,Pure = 1, the nonlinear part of the renormalisation transformation (37 )  cannot 
be absorbed into the scaling fields so that the renormalisation equations for p ,  and 
p2 decouple (Wegner 1976). Instead, we could find two scaling fields, pI and p2 such 
that the renormalisation transformations can be written 

where pi and p;  denote the values of the scaling fields after one renormalisation step. 
Using formula (37 )  and assuming that the pI  can be expanded in the following way: 

one can determine the constants a and  b and all the constants U exceDt one. One  
finds that 

pi = [2 + ( 10 - 7&)Ax]pl - (2942 - 41)plp2 

pi = [ 1 + ( I O  - 7&)Ax]p2 - f( 12842- 1 8 1 ) p i  

where p ,  and p2 are given by 
- _  

p I = - (4 + 345) E +z + f( -5 + 45)AxE + f ( -3 + 242)( I)’ + $( 536 - 37942) ( E’) ’  

+ ;( 4 - 342)2 + $( 17 - 1242),“ + D[ -(4 + 342) E 2  + (T)’] 

where the constant D cannot be determined and  remains arbitrary. 
The equation of the critical surface, at order  AX)^, is 

cl = - ( 4 + 3 J 2 ) E + 2 + ; ( - 5  +&)Axd+$(-3 +242)(d)’ 
- -  

+$( 536 - 3 7 9 h ) ( Z ) ’  ++(4 - 342) E~ +f( 17 - 1242)2 
= O  

where we have arbitrarily chosen D = 0 in (48a). 
One should notice that the constant D has no effect in the equation of the critical 

surface because at order (Ax)’, one can also write (48a) as a product: 

pl=(l+D2):l 

and for narrow distributions pI = 0 this is equivalent to ,I1 = 0. 
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In 0 7 we shall see how equations (47) determine the singularity of the free energy 
of the random system when Ax = 0 i.e. when ap  = 0. 

7. The singularity when a vanishes 

When ap  vanishes (i.e. Ax = 0) the scaling field p2 that corresponds to randomness is 
marginal. Therefore, one expects logarithmic corrections to the critical behaviour. If 
we call p l ( n )  and p 2 ( n )  the values of the two scaling fields after n renormalisations, 
from (47), we have 

P l ( n  +1)=[2-aP’(n)lCLl(n) 

p2(n  + 1) = p2(n) - bb2(n)12 

where a and 6 are two positive constants given by 

a = 2 9 h - 4 1 ,  6=;(128&-181). 

For narrow distributions, we can consider that the free energy f({ Po}) is a function of 
only the two scaling fields pI and p2 

f ( { P o ) )  =fb1, P2). (54) 
From (61, one can show tha t f (p l (n) ,  p 2 ( n ) )  satisfies the following recursion relation 

f ( P l ( n  - I ) ,  p2(n - 1) )  

For narrow distributions Pn which satisfy condition (23), one can expand the 
average on the right-hand side of equation (55) and one obtains 

- 
+. + e n - ~  -- I &:-I +(En_l)’ 

2x,+q-2 (2xc+q-2)2 

where 4; = 1 +J2 and q = 4+2J2 since ap  vanishes. 
Knowing that E,-l and E : - ,  are related to p l ( n  - 1)  and p 2 ( n  - 1) by (48a) and 

(48b), and that the p I ( n )  are transformed under one renormalisation step by (51) and 
(52), we want now to find the singular part of f(pI(0),  - p 2 ( 0 ) )  for small fixed p2(0)  
when pl(0)+O. To do that, we can express E,-l and in terms of p l ( n - l )  and 
p2( n - 1) by inverting (48): 
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The second derivativef’(p,(n), p2 (n ) )  o f f  with respect to p I ( n )  obeys the following 
equation (see (51) and (56)): 

f” (Pl (n) ,  p 2 ( n ) )  

Using ( 5 7 )  and replacing q and x, by their values, one finds 

~ ( ~ ~ ( n ) ,  p z ~ ~ ~ ~ = ~ ~ 2 - ~ p 2 ~ ~ ~ ~ 2 ~ ~ p l ~ ~  + U ,  p2(n + i ) ) + i ( h -  u 9 .  

When ~ ~ ( 0 )  is small, one can integrate the recursion relations (51) and (52): 

CL2(n) = CLz(O)/(l +bpz(O)n) 

= 2“/4(O)(  1 + nbp2(0))-”/2b. 

Near the fixed point p I (0)  = p2(0)  = 0, the second derivative f” may be written: 

where n, is the value of n where p l ( n )  becomes of order 1 and therefore where the 
inhomogeneous term in equation (59) starts to be different from a(J2- l)9. 

nc - log( 1 /PI (O))/log 2. (63) 

For p2(0)  small, one can replace the sum (62) by an integral. We find 

It can be checked that formulae (64) with n, given by (63) solves equation (59). From 
(53), (63) and (64), one finds 

We see that for p2(0)  # 0, that f ”  has a logarithmic singularity to a negative power 
when the temperature T approaches the transition temperature T,. 

( 1  -2*)?)/7 
f:ing - [log( T - TA1 

Therefore a weak disorder is sufficient to suppress the divergence of the specific heat. 
At the transition temperature the specific heat has %finite maximum which increases 
like the inverse of the width of the distribution ( .s2-p2(0))  when the distribution 
becomes narrower and narrower. 

It can be checked that the limit p2(0)  + 0 in (65) recovers the pure system logarithmic 
singularity ( 18). 
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8. Essential singularities 

We would like to discuss now the possibility of essential singularities in the free energy 
due to the disorder. 

Consider a distribution of the interactions x whose support is the interval [x,in, x,,,] 
with x,,,> x,,, > x, where x, is the critical temperature of the pure system. More 
precisely, [xmin, x,,,] is the smallest interval which contains the support of the distribu- 
tion. In this section, we will suggest that the free energy has an essential singularity 
of the following form as xmin + x,. 

where cy,, is the specific heat exponent of the pure system. 
We expect also a similar formula involving xmax to be valid when xmin < x,,, < x, 

and in the limit x,,, + x,. 
To obtain formula ( 6 6 )  we shall need to use two principal approximations. The 

first one consists in replacing the renormalisation transformation R by a linearised 
transformation. The second approximation consists in replacing the sum over n ( 6 )  by 
an integral over n. 

In the neighbourhood of the fixed point x, of the pure system, let us replace the 
renormalisation transformation R given in formula (3) by its linearised form: 

4 4 

r = l  I = ,  
&"=X,-xX,=aT'(x,)  c (x"!,-x,)=fT~(x,) E( , : , .  ( 6 7 )  

Now that the renormalisation map is linear, we can calculate the renormalised distribu- 
tions P,,(x) knowing the distribution Po(x). To simplify the discussion, we shall 
consider a distribution Po(x) which is the sum of two delta functions 

PO(x) =t[a(x-xm,n) +a(x-xma,)I. ( 6 8 )  

However, we believe that ( 6 6 )  should remain valid for more general distributions Po(x). 
The probability (? , , (U) du that x belongs to the interval I defined by 

I = [x, + ( T ' )  ( X,jn( 1 - U )  + x,,, U - x,), 

X, + ( T')" (x,jn( 1 - U -du)  + x,,,( U + d u )  - x,)] 

has for large n the following form 

( ? " ( U )  = (h"(u) /2~)"*2"  exp[4"h(u)] ( 7 0 )  
where h ( u )  is a function defined on the interval 30, 1[ which is negative on the whole 
interval 30, 1 [ except in one point ( U  = f) where h vanishes with a quadratic maximum. 
For Po(x) given by ( 6 8 ) ,  one has 

( 7 1 )  
We can use the formula ( 6 )  to obtain the singular part of the free energy. Since in the 
sum ( 6 )  the singularities come only from the contribution of large n's, we can use the 
asymptotic form ( 7 0 )  and we get 

h(  U )  = - U  log U - ( 1  - U )  log( 1 - U )  -log 2. 
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with 

(73) 

We have used the fact that if xi  and x2 are distributed according to a distribution 
which is represented by Q n ( u ) ,  then the sum x I  +x2 has a distribution represented by 
Qn + i / 2 (  U ). 

Now the mathematical problem which should be solved is to show that f ( { P o } )  
given by (72) and (73) has an essential singularity of the form (66) as xmin+xC with 
xmaX - xmin fixed. 

Let us now do our second approximation and replace the sum F (  U )  by an integral 

1 1  
f l = O  4 2  

m 

F (  U )  = C Qn +1/2(  U )  , - log[2xc + - 2  + 2( T O n ( x m i n -  x c  + u ( x m a x  - x m i n ) ) I *  

F( U ) .  

Except for the value of U for which h (  U )  vanishes, one can show that F( U )  has 
the following singularity when 6 = xmin - xc + u(xmaX - xmin) + 0 keeping U fixed: 

To justify (75) from (74), one can expand the logarithm in (74) in powers of 6. Since 
the dependence on n is simple, one can integrate the high order terms in this expansion 
over n using a saddle point method. One finds a zero radius of convergence of the 
series in 6. Then using the Bore1 transform, one gets (75). 

When one integrates over U the neighbourhood of U = 0 should give the singularity 
(66). 

The justifications of (66) given in this section are clearly not sufficient to establish 
the presence of essential singularities when one edge of the distribution approaches 
the critical point of the pure system (Griffiths 1969). We believe that the linearisation 
of the renormalisation transformation should not change the form of the singularity. 
However replacing the sum by an integral or integrating over U could change the 
nature of the singularity. Therefore we think that it would be worthwhile to try and 
find the singularities of the function f given by (72) and (73). 

9. Conclusion 

We have seen in this paper that one can make a rather precise study of the critical 
properties of a spin model with random interactions on a hierarchical lattice. As 
expected from the Harris criterion, we have found that a new fixed point appears when 
cyI, becomes positive and we have obtained the exponents of this random fixed point 
perturbatively when a p  is small. We think that it would be interesting. to go to higher 
orders in the expansion of these exponents in order to compare these exponents with 
the numerical estimations of Andelman and Berker (1984). We have also seen that 
one can find the logarithmic corrections for ayp = 0. 

We think that it would be very interesting to pursue the study of disordered systems 
on hierarchical lattices. Because the pure system on hierarchical lattices can be solved 
in a few lines, one can go much further in the study of disordered systems on such 
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lattices than on usual Bravais lattices and answer more delicate questions. We think, 
in particular, that it should be very interesting to prove the existence of the essential 
singularities described in § 8 and to study the analytic properties of the free energy 
when xmin < x, < x,,,. 
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